Real-time Collaborative Environments and the Grid

Colin Perkins

University of Glasgow

Ladan Gharai

USC Information Sciences Institute

Overview

- Real-time Collaborative Environments
 - Vision
 - Progress and Limitations
- Building the Supporting Infrastructure
- Proposal for a New Architecture
- Open Issues and Related Work

opyright © 2004 University of Glasgow

Real-Time Collaborative Environments

- Support collaborative work by scientists, industry and others
 - Group communication scenarios
 - Widely distributed participants
- Integrate with Grid computing resources
 - Visualization facilities
 - Shared state and data repositories, computational resources, applications
- Provide a high-quality audio-visual experience
 - High fidelity audio, possibly with spatial positioning
 - High resolution video, wide colour gamut, high frame rate
- Provide a sense of community and presence
 - Venues as a rendezvous point; virtual meeting place
- Secure and trusted infrastructure

iginal Picture ©1998 U

Progress and Limitations

- Networked teleconferencing environments have become flexible, secure, and integrated with Grid computing environments
- Standards have matured; commercial teleconferencing and VoIP
- Facilitated by greatly increased network and host performance

- Media quality has stagnated
 - Tools are more readily available
 - But: media capabilities are all-b and don't leverage changes in te

Starting to be addressed in AccessGrid:

- DV from Australian National University
- DV + compressed HD from GIST, Korea
- Uncompressed HD from USC/ISI ConferenceXP
- The network has become fragmented
 - Multicast still not widely available
 - Growing prevalence of NAT and firewalls

Open issue - focus of this talk

Building the Supporting Infrastructure

How are collaborative environments built?

Infrastructure Challenges

Multicast Deployment

- How to support…
 - Groups with 10s (100s?) of participants
 - Rich many-to-many interaction between participants
 - Varying participant roles (audience; speaker; chair; question)
 - Control of participation, rights and responsibilities
- Want to use IP multicast, but:
 - Difficult to deploy and unstable
 - Local issues with old Ethernet switches flooding traffic
 - PIM+MSDP suffers from interdomain flooding of source state, unstable
 - Many security issues, easy to mount DoS attacks
 - Difficult to manage
 - Traffic engineering not well defined, limited QoS monitoring
 - Infrastructure not stable
 - ⇒ Strong push within IETF to deprecate traditional IP multicast in favour of source-specific (one-to-many) multicast

Copyright © 2004 University of Glasgow

Multicast Deployment

What are the scalable alternative to multicast?

Hard to deploy due to problems with multicast

Too much load on server; central point of failure

Distributes load; resilient to failures

⇒ Peer-to-peer overlays or application level multicast, independent of the network layer

NAT Traversal

- Growing prevalence of Network Address Translation (NAT) and Firewalls is fragmenting the Internet
 - Complicates applications since they cannot easily name/access peers
 - Hosts no longer have unique addresses
 - Bidirectional connectivity not assured, may vary by protocol or direction
 - Especially affects protocols with dynamic signalling \Rightarrow collaborative tools
- Numerous solutions ("kludges") under development in IETF:
 - STUN
 TURN
 ICE
 Methodologies for detecting presence of NAT, deducing it's behaviour, and establishing connectivity
- Signalling driven NAT detection and connection establishment
- ⇒ Leverage the venue server as a signalling proxy; reuse protocols

Infrastructure Challenges + Solutions

⇒ a peer-to-peer overlay with NAT traversal

A New Architectural Direction?

- Established that an overlay with NAT traversal is needed
- Desirable that this...
 - be implemented as reusable middleware
 - be application independent
 - allows existing applications to run unchanged
 - be simple for network administrators who must deploy it and enforce security policy

⇒ Propose middleware to build an overlay IP network, with NAT traversal and multicast support, run applications on that

oyright © 2004 University of Glasgow

Outline System Operation

1. Rendezvous

- Participants rendezvous at venue server
- Authenticate and acquire venue state
- Venue server acts as signalling relay; may act as last-ditch media relay

2. Session Initiation Signalling

- Participants submit list of their possible network addresses to venue server
- Venue server coordinates pair-wise ICE exchange between participants, as a UDP-based connectivity check

3. Building the overlay

- Build IP overlay using tunnelled UDP/IP on address/port pairs determined by the connectivity check
- Any appropriate peer-to-peer overlay building protocol

4. Running Collaborative Work Tools

Start media tools using IP addresses on the overlay network

An IP Overlay Network on UDP/IP

Advantages

- Simple, well-known, API for user applications
- Runs existing tools; reusable
- Single address space, irrespective of underlying addressing realms
- Doesn't require multicast in the underlying network; easy to support multicast in the overlay
- Overlay has restricted, and known, membership

Disadvantages

- Bandwidth and processing overhead due to layering and tunnelling
- Complexity of implementation
 - Although much of this needed for any system in today's Internet
- The "yeuch!" factor

Discussion Items and Open Issues

- Complexity of signalling
 - Unavoidable once you accept NAT/firewall + limited native multicast
 - No worse than similar solutions for telephony
 - Can be bundled into a middleware solution
- Quality of service support not yet well defined
 - NAT traversal requires a connectivity check
 - Potentially possible to reuse this to check non-IP connectivity
 - E.g. Try to negotiate an MPLS path or RSVP reservation
 - For future study...

Copyright © 2004 University of Glasgow

Summary + Related Work

- Real-time collaborative environments will need to deal with:
 - Fragmented connectivity, due to NAT/Firewall
 - Lack of native multicast support
 - Lack of QoS support
- Existing systems fail at this
- Many ad-hoc solutions for certain applications
- Propose to encapsulate these in a middleware component
 - An IP network built on a UDP/IP-based overlay
 - Restores end-to-end multicast connectivity for applications
- Related work: a synthesis of...
 - Microsoft peer-to-peer SDK with Teredo
 - Xbone
 - Peer-to-peer protocols